
IEEE TRANSACTIONSON MICROWAVETHEORYAND TECHNIQUES,VOL. MTT-33, NO, 6, JUNE 1985 545

with less than 180-mW dc power dissipation, and has a 10-

MHi-2.O-GHz bandwidth with 16-dB gain. It has been con-

cluded that the new circuit construction is effective for low-noise,

low power-dissipation GRAS monolithic amplifiers. This amplifier

is capable for use in mobile radio systems.
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Polygonal Coaxial Line with Round Center Conductor

WEIGAN LIN

A/Wrrzct —The complex potential fuuction W= A (In z + CNZ’) gener-

ates a zero-poteutfaf line approximating a regular polygon of N sides very

closely, except in the nearly field-free region. By means of this function we

work out the characteristic impedance, the power-carrying capacity, and the

attenuation constant of the polygonal line of N sides wtth a round inner

coaxial conductor in a closed form of elementary functions with good

accuracy compared to more complex solutions.

Results for N = 3 are believed to he nearly as good as those available in

the literature.

I. INTRODUCTION

Considerable work has been done on transmission lines in

which the two conductors are not members of the same orthogo-

nal cylindrical coordinate system. These are difficult electrostatic
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Fig. 1. TEM coaxial line with round inner and square outer conductor,
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Fig. 2. TEM coatiat line with polygonal outer conductor of N sides and

round inner conductor.

problems, one of which is the well-known charged sphere in a

cylinder [1]. Riblet solved the characteristic impedance of a TEh4

coaxial line with a round inner and square outer conductor

(shown in Fig. 1) and also of the related transmission line of a

square inner ancl round outer conductor by means of a well-known

transformation, work that first appeared in 1935 [2]. Subsequent

work appeared in 1982 on this same problem [3], [7]. The purpose

of this paper is to inve@igate the characteristics of the coaxial lime

with a round innei conductor of radius a and a polygonal outer

conductor of N sides with an inscribed circle of radius b, als

shown in Fig. 2!. In comparison with the existing data, all our

results are in closed forms, in elementary functions, and have

accuracy nearly as good as data available in the literature, but the

simplicity in the Z. formula surpasses all of them except for

N = 4. The forms of our results allow us to calculate the power-

carrying capaci~~ and the attenuation constant of the line.

II. ‘_fk ~THOD

We generalize Schelkunoff’s work on the TEM transmission

line with a round inner conductor and square outer conductor [41]

by the following complex potential function:

‘=u+’v=’+++w”l
with

(la)

(lb)

(lC)

where (p, q) are the polar coordinates, and A, R, and CN are

constants to be determined to fit the boundary conditions of the

coaxial line of Fig. 2. If U and V are, respectively, the potentkd

and the flux function, it follows that the charge per unit length (~

of this coaxial line is

Q=c[v]=2TcA. (2)

Now CN is nonxero, so the zero-potential line is determined by

the following equation from (lb):

()
–N

–CNcos Nrp= ; ln~. (3)
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Fig. 3. The zero-potentinl lines for the polygonal coaxial

We now write the right-hand side of (3) as ~(p); then

~(p)=(~)-~ln~

and ~’(p) = O gives (p/R) -~-l(l– Nlnp/R) = O, or

P_ = &N
R

and it follows from (4) that j(p) takes a maximum value

.f(P)lm==+’.
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lines, K=l, 0.85, and 0.75. (a) N= 3, (b) N= 4, (c) N= 5, and (d) N= 6.

(4)

(4a)

(4b)

Hence, (3) holds for cos Np = – 1 or p = r/N only if C~ < l/Ne,

so we can introduce k <1 to write

and the zero-potential curve or the contour of the ground outer

conductor of the coaxial line, whose potential distribution is

represented by (lb), is given by the following equation for

arbitrary k <1 by combining (3) and (4c):

(;)-N’n(:)-N=kN& COSNp = : COSNp , k<l.

,8’

x

-n

We can then tabulate X= (p/R)- N versus @ = Np from (5) for

various values of k, and from X and @ we can plot the

zero-potential curves for fixed N. We have drawn these for k =1,

0.85, and 0.75, for N =3,4, 5, and 6 in Fig. 3.

From (5), we see immediately that when ~ = O, p takes a

minimum value Pti., which can be found from (5) to satisfy the

following relation:

(*)-N’”(%)-N=:,‘=” (6’)
respectively; for k =1, 0.85, and 0.75, we obtain from (6a)

(–)

Pm,.
–N

R
=1.32110,1.27737,1.24753 (6b)

and when NV = v or p = w/N, p/R takes the maximum value

Pttr~ /R, aud (5) goes into

(5T-NWF-N=-5‘=”/N (7a)
to obtain, respectively, for k =1,0.85,0.75

(–)

Pnw N

R
= 0.3678794,0 .587033,0.657173. (7b)(5)
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TABLE I

MAXIMUM p/R AND MINIMUM p/R

k Prw/R, v = T/N Pinm/R,~ = ~

N=3 N=4 N=5 N=6 N=3 N=4 N=5 N=6

547

k=l 1.39560 1.28402 1.221340 1.18135 0.911356 0.932752 0.945830 0.954650

k = 0.85 1.19430 1.14244 1.11242 1.09284 0.921641 0.940635 0.952219 0.960021
k = 0.75 1.15020 1.11065 1.08759 1.07247 0.928930 0.946210 0.956730 0.963810

We notice that, for k =1, we have already had, from (4a)

pm= _ &’N

R
(7C)

which is the same as the first member of (7b).

Here, we tabulate only the values of p~= /R and ptin /R of

the zero-potential line for k =1, 0.85, and 0.75 for tie cases

of triangular, rectangular, pentagonal, and hexagonal coaxial

lines with round imer conductors, i.e., for N =3, 4, 5, and 6, in

Table I.

Examining the zero-potential lines in Fig. 3(a)-(d) for N = 3-6

plotted to scale, we may approximate the ground outer polygonal

conductor of Fig. 2 by the zero-potential line (5) with k = 1 as the

best choice; then

p~in = b and p~w = el/”R (8)

by (4a). The inner conductor at a potential (– Ul), of Fig. 3 is to

be approached by the following locus:

(9a)

and if p/R is not too large, we have nearly

Ul=Aln~ (9b)

a circle when UI = constant and which can be made to coincide

with the round inner conductor by putting p = a; then

A= U1/h~. (9C)

We now demonstrate that (lb) is indeed a closed curve ap-

proaching a circle. Using (9c), we write the potentiaf function

(lb) as

a

When U= – Ul, this equation becomes

~npllfl’v

()R Ne R
cos Nq=–lng.

a

Collecting terms, we have an equipotentiaf of the form

ln:+*(:)N(:)Nco’N~=o‘ ’10)
Now it is seen from (lOa) that

R>b>a

so when N >3, (a/R) < a/b and a/b is small, the equipoten-

tial (10) becomes nearly

lnp/a = O, p=a

a circle to approximate the inner circular conductor.

Thus, we may take the zero-potentiaf curve AB’ for CN = l/Ne,

i.e., k = 1 in Fig. 3(a)–(d) to replace the half-side AB of the

polygonal outer conductor, and we may also take the concentric

circle p = a tcl be the inner equipotential line of U = – UI in

order to study the operating characteristics of the TEM line of

the polygonal outer conductor and round inner conductor of Fig.

2 under study. Before we proceed, we need still to fix the

constant R h (l). From (6b), for k =1, we have from (8)

R = (1.32110) 1’Nb. (lOa)

Also fixed is p,.=

Pmm = (1.32110 e)1’Nb. (l”b)

Already we have made

pmn=b. (1OC)

III. FIELD DISTRIBUTION

From the zero-potential lines in Fig. 3 and from Table I, we

can see that, along the line v = r/N, we can change pmm by a

large amount with only a slight change in pm,. in the same

zero-potential line to maintain the potential zero. We thus see

that in the neighborhood of each interior angle there is a field-free

region. That is why we are at ease to replaee the half-side of A B

by the curved zero-potential line of (5) for k =1.

From (la), we have for the magnitude of the electric field E

inside the transmission line as

IEI=I%I=A +(l+NCN(#N) .

Recalling z = p eJ~, we have then

,E,2=$(,+(NCN$)’ }+2NCN5 cos Np . (Ila)

Along the zero potential, (5) holds for k =1; (ha) goes into

1(p)2N-w2N}‘llb)lE12=:(l+> ~

so that by (6b) and (7c), (llb) gives

lEl=Oat rp=n/N, P = Pmax (12a)

and at point A of Fig. 2, (llb) gives

lEl~=~{l+(l.3211e) ‘2+21nl.3211} = $(1.2785)2

A2.— (1219)
(0.7822b)2

independent of the number of sides N. Around the round inner

conductor, the electric field is given by

IEI=:. (12C)

Therefore, in the intenor of the TEM line of Fig. 3, when AB is

replaced by ALY, the electric field at point A is 1.2785 times the

field that would exist if the outer conductor were a round
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TABLE II

THE CHARACTERISTIC IMPEDANCE OF THE POLYGONAL LINE WITH CYLINDRICAL CENTER CONDUCTOR

N=3 N=4

Gunston [6] based on
Seshadri

Seshagiri Seshadri and Lin & Chung Seshagiri and

Present work [6] ~ 5.62 Rapian [7] Present work [6] Q4.2(d) [6] $5.62 Rajaiah [7]

a/b (Ohms) (Ohms) (ohms) (Ohms) (Ohms) (Ohms) (Ohms)

0.05 185.16 184.32

0.1 144.36 142.58

0.2 102.05 100.86

0.3 77.74 76.55
0.4 60.49 59.42

0.5 47.12 46.24

0.6 36.19 35.55

0.7 26.94 26.52

0.8 18.94 18.59

0.9 11.88 11.17

187.317
145.700
104.082

79.735
62.454

49.029

38.006

26.568
20.135

12.061

183.77
142.21
100.66

76.35
59.10

45.73

34.80
25.55
17.55

10.49

184.14 183.28
142.59 141.58
101.03 99.87

76.72 75.50
59.48 58.27
46.10 44.95

35.16 34.11
25.90 24.97
17.81 16.99

10.41 9.72

184.417
142.799

101.182

76.837
59.563

46.161

35.197
25.886

17.706

10.146

N=5

Present work Seshagiri [6] $5.62
a/b (Ohms) (Ohms)

0.05 182.94
0.1 141.38

0.2 99.83
0.3 75.52
0.4 58.27
0.5 44.89

0.6 33.97
0.7 24.72
0.8 16.72

0.9 9.66

182.58
140.92

99.26
74.91
57.65
44.30

33.42
24.24

16.26
9.06

N=6

Present work Seshagiri [6] ~ 5.62
(Ohms) (Ohms)

I
182.38
140.82

99.27
74.96
57.71
44.34

33.41
24.16

16.16

9.10

181.64
140.01

98.38
74.04
56.79

43.43

32.58
23.34

15.37

8.25

conductor of radius b by (12b), independent of N. By comparing

(12b) and (12c), it follows that the maximum field will occur at

point ~ of Fig. 2 given by (12b) when

0.7822<:<1 (13a)

and the maximum field will occm at the surface of the round

inner conductor given by (12c) if

; <0.7822. (13b)

The constant is given by (9b), or

A= U1/ln~. (14)

IV. CHARACTERISTIC IMPEDANCE

The characteristic impedance of the polygonal line with a

round inner conductor is given by

—.

where C is the capacitance per unit length of the line given by

where Q is given by (2) and Ul by (9b), so

(15a)

For N =4, we have (we use here 59.952 according to [6], it would

have been 59.9585 according to Cohn [5])

(
ZO = 59.952 in ~ +0.06962

)
(15b)

which is slightly different from that given by Schelkunoff [4].

Schelkunoff’s work is found to be in agreement with the result

given by Frankel [6], being virtually exact for

f < 0.65(Z0 > 30Q)

and giving an error within 1.5 percent for

~ <0.80

according to Cohn [5]. One referee points out that the constant in

(15a) in the limit a -+ O is ln2/K(O.707) = 0.07576 according to

Oberbettiger and Magnus (Spnnger-Verlag, Berlin, 1949).

We calculate ZO for N = 3,4,5, and 6 to be compared with the

work of various authors (see Table II). In Fig. 3(a) and (b), N = 3

and 4, and B’ is nearer to the origin than B; thus, the imped-

ances given by (15a) are lower bounds to the true values, so the

higher the better. Values for N= 3 are between those given by [6]

and [7] as shown in Table I, N = 3, and thus are better than those

given by [6]. When N = 4, values given by (15b) likewise are

better than those from Seshagiri [6]. Since Gunston claims that by

taking the geometric mean of the bounds given by Lin and

Chung, the values of [6] $ 4.2d are the most accurate results then

available, and values obtained from (15b) are very close to those

of [6] $ 4.2d (reproduced in Table II), and so are of very good

accuracy and in neat closed form!

In Fig. 3(c) and (d), N = 5 and 6, and B’ is farther from the

origin than B, so ZO given by (15a) are upper bounds to the true

values; thus, they are very slightly greater than those from [6],
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and are accurate enough for practical purposes, ZO being in

closed form (15a).

V. POWER-CAIULYING CAPACITY

The power transmitted down the transmission line is given by

R

J.l:_ff2%

Z.

r

(16)
$:”

The power-carrying capacity of the transmission line is de-

termined by the maximum electric field in the interior of the

transmission line, and is given by

P
(

b 0.27847
mu

}

=10.21 X10-3 (~~=b)2 In– +T , W (17a)
a

if

0.7822< ; <1

by (12b) and (15a), and Em= occurs at A on the outer conductor,

and

P
{

b 0.27847
max =16.68 x10-3 (aE~=)2 Inz + ~

}
(17b)

if

; <0.7822

and Em= occurs on the inner round conductor independent of q.

In both (16a) and (16b), Em= is the maximum allowable voltage

gradient; a value of 30000 V/cm is applicable for air-filled lines

under standard sea-level conditions of temperature, pressure, and

humidity.

In place of (14), we can determine the constant A by (16)

‘=7”743G”(18)

VI. ATTENUATION CONSTANT

The attenuation constant a of a transmission line supporting a

TEM mode can be expressed in terms of line integrals of the

electric field normal to the inner boundary & and outer conduc-

tor S2

1 1 ( 4sL+s’21E12~z

a=lizij P ‘
neper/m (19)

where u is the conductivity of the inner and the outer conduc-

tors, 8 is the skin depth, P is given by (16), SI is the circle of

radius a, and S2 may be taken as 2 N times AB of Fig. 2 and

Fig. 3(a)–(d) to approach the true zero-potential AB’, so that, by

putting in (llb), we have

~S.lE12 de = 2N “m”lNAz dyJo (b’+ y’)

(. l+2Nht R+ ~(bz+yz)”
e2R2N

–Nln(b2+y2)
}

=~g’{;[l+ln(y”]

= ‘~(~(1.55694)+0 .077543 ~’N(sec L9)2Nd0

-~’’~ln(secfl)2Ndf?}. (20a)

From (12c), we find that

~~,lE12 dl = 2~A2/a.

Therefore, (19) goes into

(20b)

1.3273 x10-3 1
~+fw

—— ——
b In ~ :0.27847 ‘

neper/m (20b)
08

a N
where

fN = 1.45694+ 0.024683 N~’N(sec O)zN de

-#~’Nln(secO)2~d0

fN = 0.864738 for N = 3

f“ = 0.744186 for N = 4

fN = 0.667189 for N = 5

fN = 0.662077 for N = 6.

From (20), it follows that, for fixed b, a has its minimum value at

a value of b/a, which satisfies the following equation:

ln:–fN:–
(
~_ 0.27847 = o,

N )
(21)

For instance, AT= 4, (b/a)= 3.2. This should be contrasted with

the value of ( b,/a) = 3.6 for a regular coaxial line. Equation (20)

goes into the attenuation constant for a regular coaxiaf line if

N4eoandfN~l.

VII. CONCLUSION

Generalizing Schelkunoff’s idea on the perturbation of

boundaries to clbtain the potentiaf function of (lb), we find that

the zero-potential boundary has the same symmetry as the regular

polygon of N sides and approximates the latter very closely. The

fact that this approximation is better on the portion of the side of

the polygonal outer conductor A B of Fig. 3(a)–(d), when this line

segment lies closer to the point of the minimum radius vector

~mm ) where the electric field is strong! and that this approxima-
tion is poor only in the nearly field-free region, such as in the

interior angle near the vertex B of Fig. 3(a)–(d), convinces us of

the feasibility clf the application of the complex potential func-

tion (la) to the transmission-line problem of Fig. 2 and the

reasonable accuracy of the results on impedance, power capacity,

and attenuation of this line. It is claimed in [7] that the results

found there for the characteristic impedance were superior to

those available then in the literature. Results presented in this

paper (Table 11[ and Fig. 3(a)) support this claim [7]. All the
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expressions for the characteristic impedances presented in this

paper are believed to be accurate enough for practicaf purposes,

are all in closed form, and are easily manipulated. Wheeler [8]

gives a more accurate and useful analysis, but his results are more

complicated. Other good work (such as [9]) exists, but their

results are also more complicated. The attenuation constant

formula given here is only approximately correct, and may be of

value for a quick estimation, and it happens often that experi-

mental values of the attenuation constant show a marked devi-

ation from theoretical values!
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Impedance of an Elliptic Conductor Arbitrarily

Located Between Ground Planes Filled with Two

Dielectric Media

K. V. SESHAGIRI RAO, MEMBER,IEEE, AND B. N. DAS

Msrract — This paper presents a method of detersaining the characteris-

tic impedance of an ellipse arbitrarily located between parallel conducting

planes when the region hetsveen the planes is filled with two different

dielectric media. The same generalized formulation is then extended to the

case when one of the ground planes is moved to infinity. The impedance

data for various locations of the dielectric interface with respect to the

conductor of elliptic and circular cross sections are presented. The results

of some of the special cases are compared with those available in the

literature [2].

I. INTRODUCTION

The method of analysis of transmission-line properties of

parallel strips separated by a dielectric was carried out by Wheeler

in 1965 [1]. He has also analyzed the properties of a round wire in

a cylindrical shield of polygonal cross section [2]. Later studies

were made on an offset stnpline and microstnpline using planar

strip when the line is filled with two dielectric media [3]. The

analysis of transmission line for the case when the center conduc-
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tor assumes the form of an ellipse arbitrarily located between

ground planes or placed above a single ground plane has been

carried out by the authors [4].

In the present work, the generalized conformal transformation

obtained for the conductor with an elliptic boundary is used for

the estimation of impedance data when the region between the

ground planes of the line is filled with two different dielectric

media. This analysis is based on the quasi-TEM-mode approxi-

mation and, hence, is valid at the lower frequency ranges only.

The conformal transformation transforms one half of the struc-

ture into a parallel-plate configuration in which the top and

bottom plates correspond, respectively, to the conductor with the

curved boundary and the ground planes, In this transformed

parallel-plate configuration, the dielectric interface appears in the

form of a curved contour. The characteristic impedance of this

composite parallel-plate structure is calculated by considering the

series parallel combinations of small incremental capacitances [1].

The expressions for these capacitances appear in the form of

integrals which are numerically evaluated using the adaptive

quadrature method [5].

The formulation is used for the computation of characteristic

impedances for the cases of a center conductor 1) placed exactly

above the dielectric interface, 2) placed such that one of the

principal axes is coplanar with the dielectric interface, and

3) fully embedded in the dielectric.

II. FO~LATION FOR THE CASE OF AN ELLIPSE

EMBEDDED IN MIXED DIELECTRICS BETWEEN GROUND

PLANES

Consider the configuration shown in Fig. l(a). The method of

transforming the half FABCDEF into a parallel-plate configura-

tion as shown in Fig. l(b) has already been developed by the

authors [4]. The transformation establishes the relation between

the points in the W-plane (Fig. l(b)) with those of the corre-

sponding points in the Z-plane (Fig. l(a)). The corresponding

loci in the two planes (Z and w planes) can also be determined.

The equations for the lines parallel and perpendicular to the two

ground planes in the W-plane are given by [6]

‘=-*[F’~’m’+F(sin-lElm)l‘1),
F(ylml)

+.l–
K’(m)

(2)

where m, n are constants, O < n < m <1, and where F and K

correspond, respectively, to incomplete and complete elliptic

integrals of the first kind with given argument and modulus. j3

and y are real arguments of the elliptic integrals. The elliptic

integral with complex argument @ can be expressed as

F(@lm) =F(q+iflm) =F(B[rn)*W(ylrnl)

sin b{-
t,= cosh ( sin q =

cos= y + m sin2 /3 sin2 y

Ycosflcosysiny l–msm /3

t,= cosh q sinh ~ =
cos2 y + m sin2 ~ sin2 y

t=tr+it, =sin@, ml=(l– m).

U. and VO shown in Fig. l(b) are given by

u =1+- F(sin-l-lm)
o

K(m)

~ = Km)
0 K(m) “

(3)

(4)
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