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with less than 180-mW dc power dissipation, and has a 10-
MHz-2.0-GHz bandwidth with 16-dB gain. It has been con-
cluded that the new circuit construction is effective for low-noise,
low power-dissipation GaAs monolithic amplifiers. This amplifier
is capable for use in mobile radio systems.
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Polygonal Coaxial Line with Round Center Conductor

WEIGAN LIN

Abstract —The complex potential function W = A(In z + Cyz") gener-

. ates a zero-potential line approximating a regular polygon of N sides very

closely, except in the nearly field-free region. By means of this function we
work out the characteristic impedance, the power-carrying capacity, and the
attenuation constant of the polygonal line of N sides with a round inner
coaxial conductor in a closed form of elementary functions with good
accuracy compared to more complex solutions.

Results for N = 3 are believed to be nearly as good as those available in
the literature. '

1. INTRODUCTION

Considerable work has been done on transmission lines in
which the two conductors are not members of the same orthogo-
nal cylindrical coordinate system. These are difficult electrostatic
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Fig. 1. TEM coaxial line with round inner and square outer conductor.
Fig. 2. TEM coaxial line with polygonal outer conductor of N sides and

round inner conductor.

problems, one of which is the well-known charged sphere in a
cylinder [1]. Riblet solved the characteristic impedance of a TEM
coaxial line with a round inner and square outer conductor
(shown in Fig. 1) and also of the related transmission line of a
square inner and round outer conductor by means of a well-known
transformation, work that first appeared in 1935 [2]. Subsequent
work appeared in 1982 on this same problem [3], [7]. The purpose
of this paper is to investigate the characteristics of the coaxial line
with a round inner conductor of radius @ and a polygonal outer
conductor of N sides with an inscribed circle of radius b, as
shown in Fig. 2. In comparison with the existing data, all our
results are in closed forms, in elementary functions, and have
accuracy nearly as good as data available in the literature, but the
simplicity in the Z, formula surpasses all of them except for
N = 4. The forms of our results allow us to calculate the power-
carrying capacity and the attenuation constant of the line.

II. Tue METHOD

We generalize Schelkunoff’s work on the TEM transmission
line with a round inner conductor and square outer conductor [4]
by the following complex potential function:

, . z z\V '
W=U+ V=4 ln§+CN(—E) (1a)
with
N
4U=A[1n%+CN(%) coqu)] (1b)
p AN
V=A[<p+CN(E) sian)] (1¢)

where (p, ¢) are the polar coordinates, and 4, R, and Cy are
constants to be determined to fit the boundary conditions of the
coaxial line of Fig. 2. If U and V are, respectively, the potential
and the flux function, it follows that the charge per unit length Q
of this coaxial line is

Q=¢[V]=2med. #)
Now C, is nonzero, so the zero-potential line is determined by
the following equation from (1b):

~N
- =L L
Cy cos Np (R) lnR.

(3)
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We now write the right-hand side of (3) as f(p); then

BN ARE )
f(p)=(%) m& ©)
and f’(p)=0 gives (o/RY "V '1-Nlnp/R)=0, or
L uw
R=¢€ (4a)
and it follows from (4) that f(p) takes a maximum value
1
£(0) e = 3 (4b)

Hence, (3) holds for cos No = —1 or ¢ = #/N only if Cy <1/Ne,
so we can introduce k <1 to write

- (4)
and the zero-potential curve or the contour of the ground outer
conductor of the coaxial line, whose potential distribution is
represented by (1b), is given by the following equation for
arbitrary k <1 by combining (3) and (4¢):

Cy k<l

- N - N
3 AN S _k
(R) ln(R) NNecosMp ecosth, k<l.
(%)
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The zero-potential lines for the polygonal coaxial lines, K=1, 0.85, and 0.75. () N=3,(b) N=4, (c) N=5, and (d) N=6.

We can then tabulate X = (p/R)™ " versus ® = No from (5) for
various values of k, and from X and ® we can plot the
zero-potential curves for fixed N. We have drawn these for k=1,
0.85, and 0.75, for N =3, 4, 5, and 6 in Fig, 3.

From (5), we see immediately that when ¢ =0, p takes a
minimum value p,;,, which can be found from (5) to satisfy the
following relation:

Prun \ N ( @) - - E -
(*R ) In R . p=0 (6a)
respectively; for k=1, 0.85, and 0.75, we obtain from (6a)
P, -N
(%) =1.32110,1.27737,1.24753 (6b)

and when Np = or ¢ =u/N, p/R takes the maximum value
Pmax /R, and (5) goes into

Pmax ) N { Pmax )™V k
(%) m(%) = emay 0
to obtain, respectively, for k =1,0.85,0.75
-N
(ﬂf;ﬂ) = 0.3678794,0.587033,0.657173. (7b)
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TABLE1
MaxmMuM p/R AND MINIMUM p /R
k Pmax /R, @ =7/N Puun /R, =0
N=3 N=4 N=5 N=6 N=3 N=4 N=35 N=6
k=1 1.39560 1.28402 1.221340 1.18135 0911356 0.932752 0.945830 0.954650

k=085 119430 1.14244 1.11242
k=075 115020 1.11065 1.08759

1.09284 0.921641 0.940635 0.952219 0.960021
1.07247 0.928930 0.946210 0.956730 0.963810

We notice that, for kK =1, we have already had, from (4a)
mp";(“ =e/N (7¢)

which is the same as the first member of (7b).

Here, we tabulate only the values of p,, /R and p,.. /R of
the zero-potential line for k=1, 0.85, and 0.75 for the cases
of triangular, rectangular, pentagonal, and hexagonal coaxial
lines with round inner conductors, i.e., for N=3, 4, 5, and 6, in
Table L.

Examining the zero-potential lines in Fig. 3(a)-(d) for N=3-6
plotted to scale, we may approximate the ground outer polygonal
conductor of Fig. 2 by the zero-potential line (5) with k =1 as the
best choice; then

=p and p,,, =€/ R

Prmin

(®)
by (4a). The inner conductor at a potential (— U}), of Fig. 3 is to
be approached by the following locus:

~U= [ln—+i(£)NcosN ] (9a)
1AM R T Ne\R ¢
and if p /R is not too large, we have nearly

U=A4An % (9b)

a circle when U, = constant and which can be made to coincide

with the round inner conductor by putting p = a; then
R

A=U1/1n;. (%)

We now demonstrate that (1b) is indeed a closed curve ap-

proaching a circle. Using (9¢), we write the potential function
(1b) as

U e 1 py\" ]
1n§ [lnE+Ne(§) cos Ny |.

U=

When U = — U, this equation becomes

1 /p\V R
lnR Ne (E) cosNg=—1In .
Collecting terms, we have an equipotential of the form
L L(g) N(ﬂ) N —0. .
In~ + Vel R a) s No=10.
Now it is seen from (10a) that

(10)

R>b>a
so when N >3, (a/R)<a/b and a/b is small, the equipoten-
tial (10) becomes nearly
Inp/a=0
a circle to approximate the inner circular conductor.
Thus, we may take the zero-potential curve AB’ for Cy =1/ Ne,

e, k=1 in Fig. 3(a)~(d) to replace the half-side 4B of the
polygonal outer conductor, and we may also take the concentric

p=a

circle p =a to be the inner equipotential line of U=~ U, in
order to study the operating characteristics of the TEM line of
the polygonal outer conductor and round inner conductor of Fig,
2 under study. Before we proceed, we need still to fix the
constant R in (1). From (6b), for k¥ =1, we have from (8)

R=(1.32110)"""b. (10a)
Also fixed is p,,,
= (1.32110¢)""p. (10b)
Already we have made
P = b- (10¢)

IIL

From the zero-potential lines in Fig. 3 and from Table I, we
can see¢ that, along the line ¢ = 7/N, we can change p . by a
large amount with only a slight change in p_, in the same
zero-potential line to maintain the potential zero. We thus see
that in the neighborhood of each interior angle there is a field-free
region. That is why we are at ease to replace the half-side of 4B
by the curved zero-potential line of (5) for £k =1.

From (1a), we have for the magnitude of the electric field E
inside the transmission line as

FIELD DISTRIBUTION

o law 1 z\V
|E| = dz}—A Z{1+NCN(i) } .
Recalling z = pe/%, we have then
42 o 2 o
|Ef? ——;—{1+(NCNRN) +2NCN;;C°5N‘P}- (11a)
f

Along the zero poiential (5) holds for k£ =1; (11a) goes into

‘1_ ﬂ 2N B ﬂ 2N
|EP = {1+ 2(R) ln(R) (11b)
so that by (6b) and (7c¢), (11b) gives
|Ej=0atp=m/N,  p=puy (122)

and at point 4 of Fig. 2, (11b) gives
A? -2 42 2
|EP =;{1+(1.3211e) +2In1.3211} =?(1.2785)

A2

(0.7822b

(12p)

independent of the number of sides N. Around the round inner
conductor, the electric field is given by

4
|E|==.

(12¢)
Therefore, in the interior of the TEM line of Fig. 3, when AB is
replaced by 4B, the electric field at point A4 is 1.2785 times the
field that would exist if the outer conductor were a round
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TABLEII
THE CHARACTERISTIC IMPEDANCE OF THE POLYGONAL LINE WITH CYLINDRICAL CENTER CONDUCTOR
N=3 N=4
Gunston [6] based on Seshadri
Seshagiri  Seshadri and Lin & Chung  Seshagiri and
Present work [6]§5.62  Rajaian[7] | Present work  [6] § 4.2(d) [6] § 5.62 Rajaiah [7]
a/b (Ohms) (Ohms) (Ohms) (Ohms) (Ohms) (Ohms)  (Ohms)
0.05 185.16 184.32 187.317 183.77 184.14 183.28 184.417
0.1 144.36 142.58 145.700 142.21 142.59 141.58 142.799
0.2 102.05 100.86 104.082 100.66 101.03 99.87 101.182
0.3 77.74 76.55 79.735 76.35 76.72 75.50 76.837
0.4 60.49 59.42 62.454 59.10 59.48 58.27 59.563
0.5 47.12 46.24 49.029 45.73 46.10 4495 46.161
0.6 36.19 35.55 38.006 34.80 35.16 3411 35.197
0.7 26.94 26.52 26.568 25.55 25.90 24.97 25.886
0.8 18.94 18.59 20.135 17.55 17.81 16.99 17.706
0.9 11.88 11.17 12.061 10.49 10.41 9.72 10.146
N=35 N=6
Present work  Seshagiri [6] § 5.62 Present work Seshagiri [6] § 5.62
a/b (Ohms) (Ohms) (Ohms) (Ohms)
0.05 182.94 182.58 182.38 181.64
0.1 141.38 140.92 140.82 140.01
0.2 99.83 99.26 99.27 98.38
0.3 75.52 74.91 74.96 74.04
0.4 58.27 57.65 57.71 56.79
0.5 44.89 44,30 44,34 43.43
0.6 33.97 33.42 33.41 32.58
0.7 24.72 24.24 24.16 23.34
0.8 16.72 16.26 16.16 15.37
0.9 9.66 9.06 9.10 8.25

conductor of radius b by (12b), independent of N. By comparing
(12b) and (12¢), it follows that the maximum field will occur at
point A4 of Fig. 2 given by (12b) when

0.7822 < % <1 (13a)

and the maximum field will occur at the surface of the round
inner conductor given by (12¢) if

% <0.7822. (13b)
The constant is given by (9b), or
A=U1/1n§. (14)

IV. CHARACTERISTIC IMPEDANCE

The characteristic impedance of the polygonal line with a
round inner conductor is given by

I
Z € C/e
where C is the capacitance per unit length of the line given by

-2
=1

where Q is given by (2) and U; by (9b), so

_t/gm R_1 [F( b 1
Zy= 27V e In ol 27 \/?{lna + Nln1.32110}

= 59.952(ln§ + 0.27847 )

(15a)

For N = 4, we have (we use here 59.952 according to [6], it would

have been 59.9585 according to Cohn [5])

Z,= 59.952(ln % + 0.06962) (15b)

which is slightly different from that given by Schelkunoff [4].
Schelkunoff’s work is found to be in agreement with the result
given by Frankel [6], being virtually exact for

a

b

and giving an error within 1.5 percent for

<0.65(Z, > 30Q)

a

b < 0.80
according to Cohn [5]. One referee points out that the constant in
(15a) in the limit ¢ — 0 is In2/K(0.707) = 0.07576 according to
Oberbettiger and Magnus (Springer-Verlag, Berlin, 1949).

We calculate Z, for N=3,4, 5, and 6 to be compared with the
work of various authors (see Table II). In Fig. 3(a) and (b), N =3
and 4, and B’ is ncarer to the origin than B; thus, the imped-
ances given by (152) are lower bounds to the true values, so the
higher the better. Values for N = 3 are between those given by [6]
and [7] as shown in Table I, N = 3, and thus are better than those
given by [6]. When N =4, values given by (15b) likewise are
better than those from Seshagiri [6]. Since Gunston claims that by
taking the geometric mean of the bounds given by Lin and
Chung, the values of [6] § 4.2d are the most accurate results then
available, and values obtained from (15b) are very close to those
of [6] § 4.2d (reproduced in Table II), and so are of very good
accuracy and in neat closed form!

In Fig. 3(c) and (d), N=35 and 6, and B’ is farther from the
origin than B, so Z, given by (15a) are upper bounds to the true
values; thus, they are very slightly greater than those from [6],
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and are accurate enough for practical purposes, Z, being in
closed form (15a).

V. PowgR-CARRYING CAPACITY

The power transmitted down the transmission line is given by

Uz Azlng
P=—t=——= 1
7 T (16)
27\ €

The power-carrying capacity of the transmission line is de-
termined by the maximum electric field in the interior of the
transmission line, and is given by

(17a)

Py =10.21x1073( Emaxb)z{ln% + 0’217\?47 } W

if

0.7822 < -‘; <1

by (12b) and (15a), and E_,, occurs at 4 on the outer conductor,
and

P =16.68X10‘3(aEmax)2{1n§ + 0'2]7\,847} (17b)
i
a
5 <0.7822

and E_,, occurs on the inner round conductor independent of ¢.
In both (16a) and (16b), E,,,, is the maximum allowable voltage
gradient; a value of 30 000 V/cm is applicable for air-filled lines
under standard sea-level conditions of temperature, pressure, and
humidity.

In place of (14), we can determine the constant 4 by (16)

(18)

ATTENUATION CONSTANT

VL

The attenuation constant « of a transmission line supporting a
TEM mode can be expressed in terms of line integrals of the
electric field normal to the inner boundary S, and outer conduc-
tor S,

11 € ¢Sl+s2|E|2dl

T 208 p P (19

, neper/m
where o is the conductivity of the inner and the outer conduc-
tors, § is the skin depth, P is given by (16), S; is the circle of
radius a, and S, may be taken as 2N times AB of Fig. 2 and
Fig. 3(a)-(d) to approach the true zero-potential AB’, so that, by
putting in (11b), we have

btana/N dy
Ef*de=2N AP
¢sz| |” de j(; (b2 +y2)

1

€2R2N

-{1+2N]nR+ (B2 +y*)"

—N1n(b2+y2)}

549
INA® [ @ N
“_F%Nbldi)]
1 - -
+ —-—2/ /N(sec 9)*" do ~2Nf ¥ Insec0 d6
(1.3211)* %0 0
_2NA* (= n/N N
= b—{ ~ (1:55694) +0.077543 /0 (sec8)*™ do
_ [”/Nm(seca)”da}. (20a)
Y0
From (12c¢), we find that
$s,|E> dl = 274%/a. (20b)
Therefore, (19) goes into
1 fv
o= 1 \/T (a + b )
— s
o p lné + 0.27847
a N
. b +f
1.3273x107% 1 a ¥
- S 2
b o6 _ b 027847’ ePe/m (200)
In—+
a N

where
S =1.45694+0.024683N [ " (sec 6)*" a6
0

N (a/N 2N
—;—fo In(sec®)™" df

fv=0.864738 for N=3
fv=0.744186 for N=4
fnv=20.667189 for N=35
fn =0.662077 for N=6.

From (20), it follows that, for fixed b, a has its minimum value at
a value of b/a, which satisfies the following equation:

b a 0.27847
ln;—sz—(1~ N ) 0 (21)
For instance, N = 4, (b/a) = 3.2. This should be contrasted with
the value of (b/a) = 3.6 for a regular coaxial line. Equation (20)
goes into the attenuation constant for a regular coaxial line if
N -0 and fy —1.

VIL

Generalizing Schelkunoff’s idea on the perturbation of
boundaries to obtain the potential function of (1b), we find that
the zero-potential boundary has the same symmetry as the regular
polygon of N sides and approximates the latter very closely. The
fact that this approximation is better on the portion of the side of
the polygonal outer conductor 4B of Fig. 3(a)-(d), when this line
segment lies closer to the point of the minimum radius vector
Pmm> Where the electric field is strong, and that this approxima-
tion is poor only in the nearly field-free region, such as in the
interior angle near the vertex B of Fig. 3(a)-(d), convinces us of
the feasibility of the application of the complex potential func-
tion (la) to the transmission-line problem of Fig. 2 and the
reasonable accuracy of the results on impedance, power capacity,
and attenuation of this line. It is claimed in [7] that the results
found there for the characteristic impedance were superior to
those available then in the literature. Results presented in this
paper (Table II and Fig. 3(a)) support this claim [7]. All the

CONCLUSION
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expressions for the characteristic impedances presented in this
paper are believed to be accurate enough for practical purposes,
are all in closed form, and are easily manipulated. Wheeler {8]
gives a more accurate and useful analysis, but his results are more
complicated. Other good work (such as [9]) exists, but their
results are also more complicated. The attenuation constant
formula given here is only approximately correct, and may be of
value for a quick estimation, and it happens often that experi-
mental values of the attenuation constant show a marked devi-
ation from theoretical values!
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Impedance of an Elliptic Conductor Arbitrarily
Located Between Ground Planes Filled with Two
Dielectric Media

K. V. SESHAGIRI RAO, MEMBER, IEEE, AND B. N. DAS

Abstract — This paper presents a method of determining the characteris-
tic impedance of an ellipse arbitrarily located between parallel conducting
planes when the region between the planes is filled with two different
dielectric media. The same generalized formulation is then extended to the
case when one of the ground planes is moved to infinity. The impedance
data for various locations of the dielectric interface with respect to the
conductor of elliptic and circular cross sections are presented. The results
of some of the special cases are compared with those available in the
literature [2].

I. INTRODUCTION

The method of analysis of transmission-line properties of
parallel strips separated by a dielectric was carried out by Wheeler
in 1965 [1]. He has also analyzed the properties of a round wire in
a cylindrical shield of polygonal cross section [2]. Later studies
were made on an offset stripline and microstripline using planar
strip when the line is filled with two dielectric media [3]. The
analysis of transmission line for the case when the center conduc-
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tor assumes the form of an ellipse arbitrarily located between
ground planes or placed above a single ground plane has been
carried out by the authors [4].

In the present work, the generalized conformal transformation
obtained for the conductor with an elliptic boundary is used for
the estimation of impedance data when the region between the
ground planes of the line is filled with two different dielectric
media. This analysis is based on the quasi-TEM-mode approxi-
mation and, hence, is valid at the lower frequency ranges only.
The conformal transformation transforms one half of the struc-
ture into a parallel-plate configuration in which the top and
bottom plates correspond, respectively, to the conductor with the
curved boundary and the ground planes. In this transformed
parallel-plate configuration, the dielectric interface appears in the
form of a curved contour. The characteristic impedance of this
composite parallel-plate structure is calculated by considering the
series parallel combinations of small incremental capacitances [1].
The expressions for these capacitances appear in the form of
integrals which are numerically evaluated using the adaptive
quadrature method [5].

The formulation is used for the computation of characteristic
impedances for the cases of a center conductor 1) placed exactly
above the dielectric interface, 2) placed such that one of the
principal axes is coplanar with the dielectric interface, and
3) fully embedded in the dielectric.

II. FORMULATION FOR THE CASE OF AN ELLIPSE
EMBEDDED IN MiXED DIELECTRICS BETWEEN GROUND
PLANES

Consider the configuration shown in Fig. 1(2). The method of
transforming the half FABCDEF into a parallel-plate configura-
tion as shown in Fig. 1(b) has already been developed by the
authors [4]. The transformation establishes the relation between
the points in the W-plane (Fig. 1(b)) with those of the corre-
sponding points in the Z-plane (Fig. 1(a)). The corresponding
loci in the two planes (Z and W planes) can also be determined.
The equations for the lines parallel and perpendicular to the two
ground planes in the W-plane are given by [6]

u'=—ﬁ[F(B|m)+F(sin_l \/gim)] (1)

v . F(y|my) )

b K ()
where m,n are constants, 0 <n<m<1, and where F and K
correspond, respectively, to incomplete and complete elliptic
integrals of the first kind with given argument and modulus. 8
and y are real arguments of the elliptic integrals. The elliptic
integral with complex argument ® can be expressed as

F(®|m) = F(n + i§jm) = F(B|m) £ iF(y|m;)

sin By1— m, sin® y

cos? y + msin® B sin’ y
cos Bcos ysinyyl — msin® B
cos® y + msin® B sin’ y
my=(1—m).
U, and ¥}, shown in Fig. 1(b) are given by

Uy =1+ F(sin™'/n/m|m)

K(m)

t,=cosh{sing =

t,=coshysinh § =

t=t,+it,=sin®,

(3)

_K'(m)
K (m)

4)
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